Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Investigation of the initial fragmentation of oligodeoxynucleotides in a quadrupole ion trap: charge level-related base loss.

Identifieur interne : 000373 ( Ncbi/Merge ); précédent : 000372; suivant : 000374

Investigation of the initial fragmentation of oligodeoxynucleotides in a quadrupole ion trap: charge level-related base loss.

Auteurs : Su Pan [États-Unis] ; Kathryn Verhoeven ; Jeehiun K. Lee

Source :

RBID : pubmed:16198120

Descripteurs français

English descriptors

Abstract

The charge state distribution and CID fragmentation of two series of deprotonated oligodeoxynucleotide (ODN) 9-mers (5'-GGTTXTTGG-3' and 5'-CCAAYAACC-3', X/Y = G, C, A, or T) have been studied in detail in an ion trap in an effort to understand the intrinsic properties of DNA in vacuo. The distribution of charge states (-2 to -6) is similar for both the X- and Y-series, with the most abundant being the -4 charge state. The T-rich X-series prefers higher charge states (-6 and -5) than does the Y-series. Calculations show that phosphate groups located nearest a thymine are more acidic than those near an adenine, cytosine, or guanine, thus explaining why the X-series prefers higher charge states. We use the term "charge level" to define the ratio of the charge state to the total number of phosphate groups present in the ODN. We find, consistent with previous studies, that the initial step of fragmentation is loss of nucleobase either as an anion or as a neutral. We observe the former for ODNs with charge levels greater than 50% and the latter for ODNs with charge levels below 50%. The overall anionic base loss follows the trend A(-) > G(-) approximately T(-) > C(-); electrostatic potential calculations indicate that this trend follows delocalization of electron density for each anion, with A(-) being the most stabilized through delocalization. For neutral base loss, thymine (TH) is rarely cleaved, while the preferences for AH, GH, and CH loss vary. Proton affinity (PA) calculations show that a nearby negatively charged phosphate enhances the PA of proximally located nucleobases; this PA enhancement probably plays a role in promoting neutral base loss. The trends differ by charge level. At a charge level of 37.5% (-3 charge state), AH loss is preferred over CH and GH loss, regardless of sequence. However, at a charge level of 25% (-2 charge state), the terminal bases are preferentially lost over the internal bases, regardless of identity. By reconstructing the ODN sequences from structurally informative (a-BH) and w ions, we are able to identify the charge locations for the -3 and -2 charge states. For the -3 charge state, one charge resides on each "most terminal" phosphate, with the third being in the middle. For the -2 charge state, each charge resides on the penultimate phosphate groups. We compare our data to earlier experiments in an effort to generalize trends.

DOI: 10.1016/j.jasms.2005.07.009
PubMed: 16198120

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:16198120

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Investigation of the initial fragmentation of oligodeoxynucleotides in a quadrupole ion trap: charge level-related base loss.</title>
<author>
<name sortKey="Pan, Su" sort="Pan, Su" uniqKey="Pan S" first="Su" last="Pan">Su Pan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Verhoeven, Kathryn" sort="Verhoeven, Kathryn" uniqKey="Verhoeven K" first="Kathryn" last="Verhoeven">Kathryn Verhoeven</name>
</author>
<author>
<name sortKey="Lee, Jeehiun K" sort="Lee, Jeehiun K" uniqKey="Lee J" first="Jeehiun K" last="Lee">Jeehiun K. Lee</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:16198120</idno>
<idno type="pmid">16198120</idno>
<idno type="doi">10.1016/j.jasms.2005.07.009</idno>
<idno type="wicri:Area/PubMed/Corpus">002307</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002307</idno>
<idno type="wicri:Area/PubMed/Curation">002307</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002307</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002198</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002198</idno>
<idno type="wicri:Area/Ncbi/Merge">000373</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Investigation of the initial fragmentation of oligodeoxynucleotides in a quadrupole ion trap: charge level-related base loss.</title>
<author>
<name sortKey="Pan, Su" sort="Pan, Su" uniqKey="Pan S" first="Su" last="Pan">Su Pan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Verhoeven, Kathryn" sort="Verhoeven, Kathryn" uniqKey="Verhoeven K" first="Kathryn" last="Verhoeven">Kathryn Verhoeven</name>
</author>
<author>
<name sortKey="Lee, Jeehiun K" sort="Lee, Jeehiun K" uniqKey="Lee J" first="Jeehiun K" last="Lee">Jeehiun K. Lee</name>
</author>
</analytic>
<series>
<title level="j">Journal of the American Society for Mass Spectrometry</title>
<idno type="ISSN">1044-0305</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Composition</term>
<term>Base Sequence</term>
<term>DNA Fingerprinting (methods)</term>
<term>Ions</term>
<term>Molecular Sequence Data</term>
<term>Oligodeoxyribonucleotides (analysis)</term>
<term>Oligodeoxyribonucleotides (chemistry)</term>
<term>Sequence Analysis, DNA (methods)</term>
<term>Spectrometry, Mass, Electrospray Ionization (methods)</term>
<term>Static Electricity</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de séquence d'ADN ()</term>
<term>Composition en bases nucléiques</term>
<term>Données de séquences moléculaires</term>
<term>Ions</term>
<term>Oligodésoxyribonucléotides ()</term>
<term>Oligodésoxyribonucléotides (analyse)</term>
<term>Profilage d'ADN ()</term>
<term>Spectrométrie de masse ESI ()</term>
<term>Séquence nucléotidique</term>
<term>Électricité statique</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Oligodeoxyribonucleotides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Oligodeoxyribonucleotides</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Ions</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Oligodésoxyribonucléotides</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>DNA Fingerprinting</term>
<term>Sequence Analysis, DNA</term>
<term>Spectrometry, Mass, Electrospray Ionization</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Composition</term>
<term>Base Sequence</term>
<term>Molecular Sequence Data</term>
<term>Static Electricity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
<term>Composition en bases nucléiques</term>
<term>Données de séquences moléculaires</term>
<term>Ions</term>
<term>Oligodésoxyribonucléotides</term>
<term>Profilage d'ADN</term>
<term>Spectrométrie de masse ESI</term>
<term>Séquence nucléotidique</term>
<term>Électricité statique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The charge state distribution and CID fragmentation of two series of deprotonated oligodeoxynucleotide (ODN) 9-mers (5'-GGTTXTTGG-3' and 5'-CCAAYAACC-3', X/Y = G, C, A, or T) have been studied in detail in an ion trap in an effort to understand the intrinsic properties of DNA in vacuo. The distribution of charge states (-2 to -6) is similar for both the X- and Y-series, with the most abundant being the -4 charge state. The T-rich X-series prefers higher charge states (-6 and -5) than does the Y-series. Calculations show that phosphate groups located nearest a thymine are more acidic than those near an adenine, cytosine, or guanine, thus explaining why the X-series prefers higher charge states. We use the term "charge level" to define the ratio of the charge state to the total number of phosphate groups present in the ODN. We find, consistent with previous studies, that the initial step of fragmentation is loss of nucleobase either as an anion or as a neutral. We observe the former for ODNs with charge levels greater than 50% and the latter for ODNs with charge levels below 50%. The overall anionic base loss follows the trend A(-) > G(-) approximately T(-) > C(-); electrostatic potential calculations indicate that this trend follows delocalization of electron density for each anion, with A(-) being the most stabilized through delocalization. For neutral base loss, thymine (TH) is rarely cleaved, while the preferences for AH, GH, and CH loss vary. Proton affinity (PA) calculations show that a nearby negatively charged phosphate enhances the PA of proximally located nucleobases; this PA enhancement probably plays a role in promoting neutral base loss. The trends differ by charge level. At a charge level of 37.5% (-3 charge state), AH loss is preferred over CH and GH loss, regardless of sequence. However, at a charge level of 25% (-2 charge state), the terminal bases are preferentially lost over the internal bases, regardless of identity. By reconstructing the ODN sequences from structurally informative (a-BH) and w ions, we are able to identify the charge locations for the -3 and -2 charge states. For the -3 charge state, one charge resides on each "most terminal" phosphate, with the third being in the middle. For the -2 charge state, each charge resides on the penultimate phosphate groups. We compare our data to earlier experiments in an effort to generalize trends.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16198120</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>01</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1044-0305</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>16</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2005</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Journal of the American Society for Mass Spectrometry</Title>
<ISOAbbreviation>J. Am. Soc. Mass Spectrom.</ISOAbbreviation>
</Journal>
<ArticleTitle>Investigation of the initial fragmentation of oligodeoxynucleotides in a quadrupole ion trap: charge level-related base loss.</ArticleTitle>
<Pagination>
<MedlinePgn>1853-65</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The charge state distribution and CID fragmentation of two series of deprotonated oligodeoxynucleotide (ODN) 9-mers (5'-GGTTXTTGG-3' and 5'-CCAAYAACC-3', X/Y = G, C, A, or T) have been studied in detail in an ion trap in an effort to understand the intrinsic properties of DNA in vacuo. The distribution of charge states (-2 to -6) is similar for both the X- and Y-series, with the most abundant being the -4 charge state. The T-rich X-series prefers higher charge states (-6 and -5) than does the Y-series. Calculations show that phosphate groups located nearest a thymine are more acidic than those near an adenine, cytosine, or guanine, thus explaining why the X-series prefers higher charge states. We use the term "charge level" to define the ratio of the charge state to the total number of phosphate groups present in the ODN. We find, consistent with previous studies, that the initial step of fragmentation is loss of nucleobase either as an anion or as a neutral. We observe the former for ODNs with charge levels greater than 50% and the latter for ODNs with charge levels below 50%. The overall anionic base loss follows the trend A(-) > G(-) approximately T(-) > C(-); electrostatic potential calculations indicate that this trend follows delocalization of electron density for each anion, with A(-) being the most stabilized through delocalization. For neutral base loss, thymine (TH) is rarely cleaved, while the preferences for AH, GH, and CH loss vary. Proton affinity (PA) calculations show that a nearby negatively charged phosphate enhances the PA of proximally located nucleobases; this PA enhancement probably plays a role in promoting neutral base loss. The trends differ by charge level. At a charge level of 37.5% (-3 charge state), AH loss is preferred over CH and GH loss, regardless of sequence. However, at a charge level of 25% (-2 charge state), the terminal bases are preferentially lost over the internal bases, regardless of identity. By reconstructing the ODN sequences from structurally informative (a-BH) and w ions, we are able to identify the charge locations for the -3 and -2 charge states. For the -3 charge state, one charge resides on each "most terminal" phosphate, with the third being in the middle. For the -2 charge state, each charge resides on the penultimate phosphate groups. We compare our data to earlier experiments in an effort to generalize trends.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pan</LastName>
<ForeName>Su</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Verhoeven</LastName>
<ForeName>Kathryn</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Jeehiun K</ForeName>
<Initials>JK</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>09</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Am Soc Mass Spectrom</MedlineTA>
<NlmUniqueID>9010412</NlmUniqueID>
<ISSNLinking>1044-0305</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007477">Ions</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009838">Oligodeoxyribonucleotides</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001482" MajorTopicYN="N">Base Composition</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016172" MajorTopicYN="N">DNA Fingerprinting</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007477" MajorTopicYN="N">Ions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009838" MajorTopicYN="N">Oligodeoxyribonucleotides</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021241" MajorTopicYN="N">Spectrometry, Mass, Electrospray Ionization</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055672" MajorTopicYN="N">Static Electricity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2005</Year>
<Month>04</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2005</Year>
<Month>07</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2005</Year>
<Month>07</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>10</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>1</Month>
<Day>20</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>10</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16198120</ArticleId>
<ArticleId IdType="pii">S1044-0305(05)00618-5</ArticleId>
<ArticleId IdType="doi">10.1016/j.jasms.2005.07.009</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Am Soc Mass Spectrom. 2001 Feb;12(2):180-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11212003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mass Spectrom. 1996 Nov;31(11):1277-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8946735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Mass Spectrom. 2000 Jan;11(1):24-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10631661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Mass Spectrom. 1999 Nov;10 (11):1095-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10536816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Mass Spectrom. 2001 May;12(5):580-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11349956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Mass Spectrom. 1995 Feb;6(2):102-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24222072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Mass Spectrom. 2004 Jan;15(1):55-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14698556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Mass Spectrom. 2001 Jun;12(6):744-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11401165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 1998 Sep 23;120(37):9605-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16498487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Mass Spectrom. 1998 Jul;9(7):683-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9879378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Mass Spectrom. 2002 Mar;13(3):195-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11908798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Mass Spectrom. 1998 Nov;9(11):1117-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9794082</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>New Jersey</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Lee, Jeehiun K" sort="Lee, Jeehiun K" uniqKey="Lee J" first="Jeehiun K" last="Lee">Jeehiun K. Lee</name>
<name sortKey="Verhoeven, Kathryn" sort="Verhoeven, Kathryn" uniqKey="Verhoeven K" first="Kathryn" last="Verhoeven">Kathryn Verhoeven</name>
</noCountry>
<country name="États-Unis">
<region name="New Jersey">
<name sortKey="Pan, Su" sort="Pan, Su" uniqKey="Pan S" first="Su" last="Pan">Su Pan</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000373 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000373 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:16198120
   |texte=   Investigation of the initial fragmentation of oligodeoxynucleotides in a quadrupole ion trap: charge level-related base loss.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:16198120" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021